import { multiply } from 'mathjs';
/**
* Projects data using common spatial pattern (CSP) and reduces to given number of dimensions.
* Check out {@link https://bci.js.org/examples/csp/} for an interactive example of how CSP works.
* @memberof module:bcijs
* @function
* @name cspProject
* @param {object} cspParams - CSP parameters computed using the cspLearn function
* @param {number[][]} data - Data points to be projected. Rows should be samples, columns should be signals.
* @param {number} [dimensions] - Number of dimensions to be returned. Can range from 1 to number of signals. Defaults to number of signals.
* @returns {number[][]} Projected data. Rows are samples, columns are dimensions sorted by descending importance.
* @example
* // Learn the CSP params
* let cspParams = bci.cspLearn(class_a, class_b);
*
* // Project the signals
* let class_a_csp = bci.cspProject(cspParams, class_a);
* let class_b_csp = bci.cspProject(cspParams, class_b);
*/
export function cspProject(cspParams, data, dimensions) {
var projected = multiply(data, cspParams.V);
// Default number of dimensions is all of them, which is number of columns in data
dimensions = typeof dimensions !== "undefined" ? dimensions : projected[0].length;
var reduced = [];
for (var r = 0; r < projected.length; r++) {
reduced.push([]);
for (var i = 0; i < dimensions; i++) {
// Start at left and right ends of matrix columns are work towards center
if (i % 2 == 0) {
var column = i / 2;
} else {
var column = projected[0].length - (i + 1) / 2;
}
reduced[r].push(projected[r][column]);
}
}
return reduced;
}